We consider the stationary Navier–Stokes equations in the two‐dimensional torus double-struckT2$\mathbb {T}^2$. For any ε>0$\varepsilon >0$, we show the existence, uniqueness, and continuous dependence of solutions in homogeneous toroidal Besov spaces Ḃp+ε,q−1+2p(double-struckT2)$\dot{B}^{-1+\frac{2}{p}}_{p+\varepsilon , q}(\mathbb {T}^2)$ for given small external forces in Ḃp+ε,q−3+2p(double-struckT2)$\dot{B}^{-3+\frac{2}{p}}_{p+\varepsilon , q}(\mathbb {T}^2)$ when 1≤p<2$1\le p <2$. These spaces become closer to the scaling invariant ones if the difference ε becomes smaller. This well‐posedness is proved by using the embedding property and the para‐product estimate in homogeneous Besov spaces. In addition, for the case false(p,qfalse)∈false(false{2false}×false(2,∞false]false)∪false(false(2,∞false]×false[1,∞false]false)$(p,q)\in (\lbrace 2\rbrace \times (2,\infty ])\cup ((2,\infty ]\times [1,\infty ])$, we can show the ill‐posedness, even in the scaling invariant spaces. Actually in such cases of p and q, we can prove that ill‐posedness by showing the discontinuity of a certain solution map from Ḃp,q−3+2p(double-struckT2)$\dot{B}^{-3+\frac{2}{p}}_{p ,q}(\mathbb {T}^2)$ to Ḃp,q−1+2p(double-struckT2)$\dot{B}^{-1+\frac{2}{p}}_{p, q}(\mathbb {T}^2)$.