2021
DOI: 10.1017/s0004972720001549
|View full text |Cite
|
Sign up to set email alerts
|

On the Pronorm of a Group

Abstract: The pronorm of a group G is the set $P(G)$ of all elements $g\in G$ such that X and $X^g$ are conjugate in ${\langle {X,X^g}\rangle }$ for every subgroup X of G. In general the pronorm is not a subgroup, but we give evidence of some classes of groups in which this property holds. We also investigate the structure of a generalised soluble group G whose pronorm contains a subgroup of finite index.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2022
2022
2022
2022

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 13 publications
0
0
0
Order By: Relevance