2022
DOI: 10.1017/jfm.2022.106
|View full text |Cite
|
Sign up to set email alerts
|

On the properties of energy flux in wave turbulence

Abstract: We study the properties of energy flux in wave turbulence via the Majda–McLaughlin– Tabak (MMT) equation with a quadratic dispersion relation. One of our purposes is to resolve the inter-scale energy flux $P$ in the stationary state to elucidate its distribution and scaling with spectral level. More importantly, we perform a quartet-level decomposition of $P=\sum _\varOmega P_\varOmega$ , with each component $P_\varOmega$ repres… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
10
0

Year Published

2022
2022
2023
2023

Publication Types

Select...
6
2

Relationship

3
5

Authors

Journals

citations
Cited by 16 publications
(15 citation statements)
references
References 50 publications
0
10
0
Order By: Relevance
“…First, we note that the breather also emerges for the focusing equation ( 1) with λ = −1 under the same conditions. Second, the breather can also be observed under a forced/dissipated system [28], but with the Rayleigh-Jeans spectrum replaced by the wave turbulence spectrum at high nonlinearity levels. Last but not least, we have performed extensive numerical analysis to verify that the breather we observe is not a numerical artifact.…”
Section: Resultsmentioning
confidence: 99%
“…First, we note that the breather also emerges for the focusing equation ( 1) with λ = −1 under the same conditions. Second, the breather can also be observed under a forced/dissipated system [28], but with the Rayleigh-Jeans spectrum replaced by the wave turbulence spectrum at high nonlinearity levels. Last but not least, we have performed extensive numerical analysis to verify that the breather we observe is not a numerical artifact.…”
Section: Resultsmentioning
confidence: 99%
“…Deng & Hani 2023) and numerical studies (e.g. Hrabski & Pan 2020, 2022), the WKE should be considered as a result of maintaining sufficient quasi-resonances from the dynamical equation, so using broadening in the delta function is somewhat redundant. Such broadened delta functions, on the other hand, might be physically meaningful if finite size effect is important, as in situations described in Pan & Yue (2017).…”
Section: Methodsmentioning
confidence: 99%
“…Non-zero inter-scale energy fluxes are a fundamental feature of wave turbulence that is still far from being fully understood – see e.g. the recent works Hrabski & Pan (2022) and Dematteis & Lvov (2021). In geophysical applications, the study of wave turbulence fluxes dates back to the early 1980s for internal waves (McComas & Müller 1981; Holloway, Henyey & Pomphrey 1986) and surface gravity waves (Hasselmann & Hasselmann 1981).…”
Section: Introductionmentioning
confidence: 99%
“…Subsequent improvements of the approximations to flux computations led to important theoretical and numerical tools that are used up to this day. For the surface gravity wave problem, the numerical schemes currently employed in the WAM global model of wave forecasting (Hasselmann & Hasselmann 1985;Resio & Perrie 1991;Komen et al 1996;Janssen 2004) use approximations of the main resonant wave quartets that are responsible for the direct and inverse cascade of energy and wave action through the wave spectrum. This allows for accurate predictions of the global sea states, explaining, for instance, the formation of the large oceanic swells from an inverse cascade process towards the long waves.…”
Section: Introductionmentioning
confidence: 99%