2021
DOI: 10.3390/signals2040042
|View full text |Cite
|
Sign up to set email alerts
|

On the Quality of Deep Representations for Kepler Light Curves Using Variational Auto-Encoders

Abstract: Light curve analysis usually involves extracting manually designed features associated with physical parameters and visual inspection. The large amount of data collected nowadays in astronomy by different surveys represents a major challenge of characterizing these signals. Therefore, finding good informative representation for them is a key non-trivial task. Some studies have tried unsupervised machine learning approaches to generate this representation without much effectiveness. In this article, we show tha… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2022
2022
2023
2023

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 50 publications
0
0
0
Order By: Relevance