Abstract:In this paper, we prove that the Ramanujan-Nagell type Diophantine equation x 2 + Ak n = B has at most three nonnegative integer solutions (x, n) for A = 1, 2, 4, k an odd prime and B a positive integer. Therefore, we partially confirm two conjectures of Ulas from [23].
In this paper, we prove that the Ramanujan-Nagell type Diophantine equation \(Dx^2+k^n=B\) has at most three nonnegative integer solutions \((x, n)\) for \(k\) a prime and \(B, D\) positive integers.
In this paper, we prove that the Ramanujan-Nagell type Diophantine equation \(Dx^2+k^n=B\) has at most three nonnegative integer solutions \((x, n)\) for \(k\) a prime and \(B, D\) positive integers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.