“…w∈Cm h η m (z, w)Using the previous lemma, we see thatw∈Cm h η m (z, w) H q An (w, −n) = O(m − 3 2 −u ) + v η (z) w∈Cm µ m (w) H q An (w, −n) m 1Note that symmetry and the argument of Lemma 3.8 imply thatw∈Cm µ m (w)H q An (w, −n) = w∈Cm P −1 (S(σ m ∧ τ + ) = w) P −1 (σ m < τ + ) H A − n (w, −n) = w∈Cm,d(w,m)≥m 3/−1 (S(σ m ∧ τ + ) = w) 4P −1 (σ m < τ + ) ·G A − n (w, −(n − 1))(1 + O(n −1/2 )). The argument of Lemma 3.8 and Theorem 8.1 in[1] imply thatµ m (w) H q An (w, −n) = 1 2π h (−1, w)g A − n (w, −(n − 1))(1 + O(n −1/2+ǫ )) dw,whereh is the Brownian Poisson kernel in the slit disk conditional on not leaving at the slit and the integral is over {w : |w| = m, d(w, m) ≥ R 3/4 }. This last expression can be shown to equal c ′ n [1 + O(n −u )] for some c ′ .…”