In this paper, we consider the effective reducibility of the quasi-periodic linear Hamiltonian system x˙=A+εQt,εx, ε∈0,ε0, where A is a constant matrix with possible multiple eigenvalues and Q(t,ε) is analytic quasi-periodic with respect to t. Under nonresonant conditions, it is proved that this system can be reduced to y˙=A⁎ε+εR⁎t,εy, ε∈0,ε⁎, where R⁎ is exponentially small in ε, and the change of variables that perform such a reduction is also quasi-periodic with the same basic frequencies as Q.