Data Science and Knowledge Engineering for Sensing Decision Support 2018
DOI: 10.1142/9789813273238_0057
|View full text |Cite
|
Sign up to set email alerts
|

On the reduction of biases in big data sets for the detection of irregular power usage

Abstract: In machine learning, a bias occurs whenever training sets are not representative for the test data, which results in unreliable models. The most common biases in data are arguably class imbalance and covariate shift. In this work, we aim to shed light on this topic in order to increase the overall attention to this issue in the field of machine learning. We propose a scalable novel framework for reducing multiple biases in high-dimensional data sets in order to train more reliable predictors. We apply our meth… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2020
2020
2021
2021

Publication Types

Select...
1
1

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 13 publications
0
0
0
Order By: Relevance