Abstract. We develop a general convergence analysis for a class of inexact Newtontype regularizations for stably solving nonlinear ill-posed problems. Each of the methods under consideration consists of two components: the outer Newton iteration and an inner regularization scheme which, applied to the linearized system, provides the update. In this paper we give a novel and unified convergence analysis which is not confined to a specific inner regularization scheme but applies to a multitude of schemes including Landweber and steepest decent iterations, iterated Tikhonov method, and method of conjugate gradients.