U-bends are a common geometry in heat exchangers. In this paper, a U-bend in the vertical plane connected to horizontal straight pipes is considered. An initially stratified water/air flow moves upwards against gravity. The aim of this research is to investigate the internal flow profile and resulting force when the U-bend is subjected to a stratified air-water flow at the inlet. This is done numerically, i.e. by solving the unsteady Reynolds-averaged Navier-Stokes equations. For low mass flow rates, large gas bubbles are naturally formed at the entrance of the bend. The transient force on the tube allows to determine precisely the time instants of bubble initiation and thus to quantify the bubble frequency. Firstly, the tube is assumed to be rigid and the dependence of force oscillation on the inlet conditions is investigated. Secondly, the influence of the viscosity, wall wetting and the mass flow rate is analyzed. Finally, a fluidstructure interaction calculation is performed in order to quantify the vibration characteristics of the tube.