In this paper, a new form of the symmetric vector equilibrium problem is introduced and, by mixing properties of the nonlinear scalarization mapping and the maximal element lemma, an existence theorem for it is established. We show that Ky Fan’s lemma, as a usual technique for proving the existence results for equilibrium problems, implies the maximal element lemma, while it is useless for proving the main theorem of this paper. Our results can be viewed as an extension and improvement of the main results obtained by Farajzadeh (Filomat 29(9):2097-2105, 2015) and some corresponding results that appeared in this area by relaxing the lower semicontinuity, quasiconvexity on the mappings and being nontrivial of the dual cones. Finally, some examples are given to support the main results.