We investigate modeling the dynamics of an electrostatically actuated resonator using the perturbation method of multiple time scales (MTS). First, we discuss two approaches to treat the nonlinear parallel-plate electrostatic force in the equation of motion and their impact on the application of MTS: expanding the force in Taylor series and multiplying both sides of the equation with the denominator of the forcing term. Considering a spring–mass–damper system excited electrostatically near primary resonance, it is concluded that, with consistent truncation of higher-order terms, both techniques yield same modulation equations. Then, we consider the problem of an electrostatically actuated resonator under simultaneous superharmonic and primary resonance excitation and derive a comprehensive analytical solution using MTS. The results of the analytical solution are compared against the numerical results obtained by long-time integration of the equation of motion. It is demonstrated that along with the direct excitation components at the excitation frequency and twice of that, higher-order parametric terms should also be included. Finally, the contributions of primary and superharmonic resonance toward the overall response of the resonator are examined.