Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Abstract. In this paper we review the development of the concept of the stellar rotation parameter commonly known as v sin i. We emphasize that the interpretation of the parameter in terms of physical characteristics of the star always depends on comparison with a model that is intended to represent the physical properties of the star. To that end we will trace the development of such models along with the observational means of determining the parameter. Emphasis will be place on the traditional methods involving stellar spectroscopy, but some attention will be place on indirect methods involving direct measurement of the rotation period and recent interferometric determination of stellar oblatness. In addition we will comment on recent techniques involving the simultaneous measurement of many spectral lines and synthetic spectra to improve the accuracy of rotational half-widths.The natural desire for simplicity of such models has often resulted in erroneous values for stellar parameters. This is particularly the case for the most rapidly rotating stars generally of early spectral type, but may also be present in some giants and supergiants where rapid rotation is difficult to detect. Finally, we will comment on the possibilities of improving the quality of both the measurement and interpretation of this important stellar rotation parameter. IntroductionEver since Galileo proclaimed, in the Sidereal Messenger (1610), that some celestial objects both rotated and revolved those who observe the heavens have enquired into the rotation of stars. Thomas Wright (1750) noted that stars were like the sun and vice verse and, by noting that the sun rotated on its axis, he may be credited with being the first to speculate that stars do so as well. But the actual observation of such phenomenon had to wait until stellar spectroscopy improved sufficiently to quantitatively observe the shape of stellar spectra lines. While Otto Struve is generally credited with being the "father of stellar rotation", seminal work by a number of astronomers early in the 20th century laid a broad foundation for the quantitative determination of stellar rotation. Although Shapley & Nicholsen (1919) were the first to formalize the concept of rotational broadening, Carroll (1928Carroll ( , 1933 and Carroll & Ingram (1933) developed the first workable model and applied it to stellar systems. Collins & Truax (1995) Rossiter's (1924) explanation of an anomaly in the radial velocity curve (3 Lyrae as resulting from the axial rotation of the eclipsed star during the eclipse. The systematic covering of the eclipsed disk yields shifts in the center of spectral lines during the eclipse resulting from apparent changes in the mean line-of-sight motion of the rotating eclipsed star. This effect, which is yet to be described for any star by an ab initio model, is still generally known as the Rossiter Effect and is considered to be first direct confirmation that stars do rotate. It was almost immediately confirmed by, Rossiter's doctoral advisor, McLaughlin (1...
Abstract. In this paper we review the development of the concept of the stellar rotation parameter commonly known as v sin i. We emphasize that the interpretation of the parameter in terms of physical characteristics of the star always depends on comparison with a model that is intended to represent the physical properties of the star. To that end we will trace the development of such models along with the observational means of determining the parameter. Emphasis will be place on the traditional methods involving stellar spectroscopy, but some attention will be place on indirect methods involving direct measurement of the rotation period and recent interferometric determination of stellar oblatness. In addition we will comment on recent techniques involving the simultaneous measurement of many spectral lines and synthetic spectra to improve the accuracy of rotational half-widths.The natural desire for simplicity of such models has often resulted in erroneous values for stellar parameters. This is particularly the case for the most rapidly rotating stars generally of early spectral type, but may also be present in some giants and supergiants where rapid rotation is difficult to detect. Finally, we will comment on the possibilities of improving the quality of both the measurement and interpretation of this important stellar rotation parameter. IntroductionEver since Galileo proclaimed, in the Sidereal Messenger (1610), that some celestial objects both rotated and revolved those who observe the heavens have enquired into the rotation of stars. Thomas Wright (1750) noted that stars were like the sun and vice verse and, by noting that the sun rotated on its axis, he may be credited with being the first to speculate that stars do so as well. But the actual observation of such phenomenon had to wait until stellar spectroscopy improved sufficiently to quantitatively observe the shape of stellar spectra lines. While Otto Struve is generally credited with being the "father of stellar rotation", seminal work by a number of astronomers early in the 20th century laid a broad foundation for the quantitative determination of stellar rotation. Although Shapley & Nicholsen (1919) were the first to formalize the concept of rotational broadening, Carroll (1928Carroll ( , 1933 and Carroll & Ingram (1933) developed the first workable model and applied it to stellar systems. Collins & Truax (1995) Rossiter's (1924) explanation of an anomaly in the radial velocity curve (3 Lyrae as resulting from the axial rotation of the eclipsed star during the eclipse. The systematic covering of the eclipsed disk yields shifts in the center of spectral lines during the eclipse resulting from apparent changes in the mean line-of-sight motion of the rotating eclipsed star. This effect, which is yet to be described for any star by an ab initio model, is still generally known as the Rossiter Effect and is considered to be first direct confirmation that stars do rotate. It was almost immediately confirmed by, Rossiter's doctoral advisor, McLaughlin (1...
Es wird versucht, die Zusammenhange zwischen den Bahnformen der engen Doppelsternsysteme und den Rotationseigenschaften ihrer Komponenten durch eine Hypothese zu erfassen, i n der die Einfliisse der differentiellen Rotation und der Gezeitenschwingungen der Komponenten auf die Bahn beriicksichtigt werden. Die Gleichungen werden aufgestellt , welche die Bahnformen und die differentielle Rotation der Komponenten bestimmen, undes wird das Verhalten der Systeme bei verschiedenen Distanzen der Komponenten untersucht. Mit den Beobachtungen ergibt sich gute Ubereinstimmung, wenn fur die Hauptreihensteme die Existenz rotationsaufspaltender Krafte angenommen wird. Die Hypothese scheint auch einen Beitrag zum Problem der Gasstrtjme liefern zu ktinnen. Differentielle Rotation von Doppelsternkomponenten im Fall von KreisbahnenEs werde vorausgesetzt, daB die Komponenten von Doppelsternen aus Griinden, denen hier nicht weiter nachgegangen werden soll, bestrebt sind, in ihrem Innern eine ungleichformige Rotation hervorzurufen. ahnlich derjenigen, welche bei der Sonne durch die bekannten Unterschiede der Winkelgeschwindigkeiten in verschiedenen heliographischen Breiten angezeigt wird.Sind Rotationsunterschiede im Sterninnern ausgebildet, so wirkt bei Doppelsternkomponenten wie bei Einzelsternen die Reibung zwischen verschieden rasch rotierenden Schichten in Richtung eines Abbaus der Geschwindigkeitsunterschiede. Streng genommen muate man hier beriicksichtigen, daB die Schichten gleicher Rotation infolge der Gezeitendeformation der Doppelsternkomponenten bei diesen etwas anders verlaufen als beim rotationssymmetrischen Einzelstern. Der aus diesem Grunde hervorgerufene Unterschied der Reibungskrafte diirfte jedoch von untergeordneter Bedeutung sein. Er werde deshalb hier vernachlassigt.Die Abweichung der Schichten einer gezeitendeformierten Doppelsternkomponente von der Rotationssymmetrie wirkt sich aber dann wesentlich aus, lwenn die Rotationsgeschwindigkeit von der Winkelgeschwindigkeit der Umlaufsbewegung der Komponenten in der Bahn abweicht . In diesem Fall bildet sich eine Gezeitenwelle aus, die mit gleichmaoiger Geschwindigkeit in der Schicht so umlauft, daB standig der eine Flutberg in der Richtung zum andern Stern steht. Die Gezeitenwelle verursacht Massenverschiebungen, die nicht ohne Reibungswiderstande verlaufen. Wir denken uns nun die gezeitendeformierte Doppelsternkomponente in verschieden rasch rotierende Teilkorper a (a = I, 2 . . .) aufgeteilt. Die Richtung 1 zeige zum Schwerpunkt der Bahn, wahrend ya mit der Materie der einzelnen Teilkorper verbunden gedachte, beliebig gewahlte Meridianrichtungen seien. Wir betrachten nun einen Teilkorper a, dessen Rotationsgeschwindigkeit wa = dya/dt von der Winkelgeschwindigkeit der Bahnbewegungp =dl/dt abweicht. Tn diesem Fall muI3 die Materie des Teilkorpers bei ihrer Rotation abwechselnd grol3ere und kleinere Querschnitte durchlaufen. Auf den Teilkorper a wird dadurch ein Widerstand ausgeiibt, der offensichtlich mit dem Unterschied zwischen dem groBten und dem kleinsten Quers...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.