We used greenhouse experiments to evaluate cesium (Cs) uptake by four grasses, Agropyron spicatum (Pursh) Scribn & Smith, Leymus cinereus Scribn & Merr., Agropyron cristatum (L.) Gaertn. and Bromus tectorum L., to determine their potential as phytoremediation agents for Cs-contaminated soils. These four species grow well in the Intermountain region of western North America primarily on moderately coarse to coarsely textured soils where annual precipitation ranges from 20 to 50 cm. Whereas A. cristatum and B. tectorum are introduced species from Asia and the Mediterranean region of Europe, respectively, A. spicatum and L. cinereus are native to the Great Plains and Intermountain regions of North America. Plants were grown under two treatments each of: (1) soil Cs (ambient and 50 mg kg −1 + ambient), (2) soil fertility (ambient and ambient + 40 mg N kg −1 and 60 mg P kg −1 ), and 3) soil moisture (35% and 70% water holding capacity of the potted soils). Shoot Cs concentration in high soil Cs treatments was approximately ten times greater than in low soil Cs treatments. Even though shoot Cs concentrations tended to be lower in high soil Cs-high fertility-high soil moisture treatments than in high soil Cs-ambient fertility-low soil moisture treatments, total Cs uptake was greater because shoot biomass was approximately ten-fold greater. Shoots did not show signs of Cs toxicity in the high soil Cs treatments. We concluded, however, based on the low transfer factors (∼1.0) for all these grasses, that none were strong candidates as phytoremediation agents for Cs-contaminated soils.