Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
We propose a new phenomenological second order gravity theory to be denoted as ''Schouten-Codazzi' Gravity'' (SCG), as it is based on Schouten and Codazzi tensors. The theory is related, but is clearly distinct from Cotton Gravity. By assuming as source the energy momentum of General Relativity, we form a second order system with its geometric sector given by the sum of the Schouten tensor and a generic second order symmetric tensor complying with the following properties: (i) it must satisfy the Codazzi differential condition and (ii) it must be concomitant with the invariant characterization based on the algebraic structure of curvature tensors for specific spacetimes or classes of spacetimes. We derive and briefly discuss the properties of SCG solutions for static spherical symmetry (vacuum and perfect fluid), FLRW models and spherical dust fluids. While we do recognize that SCG is ``work in progress'' in an incipient stage that still requires significant theoretical development, we believe that the theory provides valuable guidelines in the search for alternatives to General Relativity
We propose a new phenomenological second order gravity theory to be denoted as ''Schouten-Codazzi' Gravity'' (SCG), as it is based on Schouten and Codazzi tensors. The theory is related, but is clearly distinct from Cotton Gravity. By assuming as source the energy momentum of General Relativity, we form a second order system with its geometric sector given by the sum of the Schouten tensor and a generic second order symmetric tensor complying with the following properties: (i) it must satisfy the Codazzi differential condition and (ii) it must be concomitant with the invariant characterization based on the algebraic structure of curvature tensors for specific spacetimes or classes of spacetimes. We derive and briefly discuss the properties of SCG solutions for static spherical symmetry (vacuum and perfect fluid), FLRW models and spherical dust fluids. While we do recognize that SCG is ``work in progress'' in an incipient stage that still requires significant theoretical development, we believe that the theory provides valuable guidelines in the search for alternatives to General Relativity
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.