2021
DOI: 10.5186/aasfm.2021.4642
|View full text |Cite
|
Sign up to set email alerts
|

On the Schur, positive Schur and weak Dunford–Pettis properties in Fréchet lattices

Abstract: We prove some general results on sequential convergence in Fréchet lattices that yield, as particular instances, the following results regarding a closed ideal I of a Banach lattice E: (i) If two of the lattices E, I and E/I have the positive Schur property (the Schur property, respectively) then the third lattice has the positive Schur property (the Schur property, respectively) as well; (ii) If I and E/I have the dual positive Schur property, then E also has this property; (iii) If I has the weak Dunford-Pet… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 40 publications
0
0
0
Order By: Relevance