2022
DOI: 10.1515/crelle-2022-0014
|View full text |Cite
|
Sign up to set email alerts
|

On the sharp lower bounds of modular invariants and fractional Dehn twist coefficients

Abstract: Modular invariants of families of curves are Arakelov invariants in arithmetic algebraic geometry. All the known uniform lower bounds of these invariants are not sharp. In this paper, we aim to give explicit lower bounds of modular invariants of families of curves, which is sharp for genus 2. According to the relation between fractional Dehn twists and modular invariants, we give the sharp lower bounds of fractional Dehn twist coefficients and classify pseudo-periodic maps with minimal coefficients for genus 2… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 29 publications
0
0
0
Order By: Relevance