<p style='text-indent:20px;'>Permutation codes under the Hamming metric are interesting topics due to their applications in power line communications and block ciphers. In this paper, we study perfect permutation codes in <inline-formula><tex-math id="M1">\begin{document}$ S_n $\end{document}</tex-math></inline-formula>, the set of all permutations on <inline-formula><tex-math id="M2">\begin{document}$ n $\end{document}</tex-math></inline-formula> elements, under the Hamming metric. We prove the nonexistence of perfect <inline-formula><tex-math id="M3">\begin{document}$ t $\end{document}</tex-math></inline-formula>-error-correcting codes in <inline-formula><tex-math id="M4">\begin{document}$ S_n $\end{document}</tex-math></inline-formula> under the Hamming metric, for more values of <inline-formula><tex-math id="M5">\begin{document}$ n $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M6">\begin{document}$ t $\end{document}</tex-math></inline-formula>. Specifically, we propose some sufficient conditions of the nonexistence of perfect permutation codes. Further, we prove that there does not exist a perfect <inline-formula><tex-math id="M7">\begin{document}$ t $\end{document}</tex-math></inline-formula>-error-correcting code in <inline-formula><tex-math id="M8">\begin{document}$ S_n $\end{document}</tex-math></inline-formula> under the Hamming metric for some <inline-formula><tex-math id="M9">\begin{document}$ n $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M10">\begin{document}$ t = 1,2,3,4 $\end{document}</tex-math></inline-formula>, or <inline-formula><tex-math id="M11">\begin{document}$ 2t+1\leq n\leq \max\{4t^2e^{-2+1/t}-2,2t+1\} $\end{document}</tex-math></inline-formula> for <inline-formula><tex-math id="M12">\begin{document}$ t\geq 2 $\end{document}</tex-math></inline-formula>, or <inline-formula><tex-math id="M13">\begin{document}$ \min\{\frac{e}{2}\sqrt{n+2},\lfloor\frac{n-1}{2}\rfloor\}\leq t\leq \lfloor\frac{n-1}{2}\rfloor $\end{document}</tex-math></inline-formula> for <inline-formula><tex-math id="M14">\begin{document}$ n\geq 7 $\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id="M15">\begin{document}$ e $\end{document}</tex-math></inline-formula> is the Napier's constant.</p>