One of the most basic issues in fluid mechanics is the description of flow in closed flows; more precisely, the calculation of pressure drops and the description of the flow form. Therefore, in this paper, the numerical simulation of the flow through the elbow was presented. This case was used to comprehensively describe the most important phenomena that should be taken into account during closed flows. The elbow was chosen as one of the most frequently used fittings in practice. The simulation was made with ANSYS Fluent, with the use of the turbulent model k-ω, SIMPLE simulation method, and at Reynolds number Re=500−100,000. The minor and major pressure loss were presented and discussed in the paper. The minor loss coefficient at the high Reynolds number was equal to around 0.2, which is close to the value of 0.22 used in engineering calculations. The influence of the Reynolds number on the shift of the stream separation point in the elbow was described. The secondary flow in the elbow was observed and the vortex structure was discussed and shown with the use of the Q-criterion (Q iso surface for level 0.005). This analysis allowed us to better visualize and describe the complex flow structure observed in the investigated case.