We show that the SET operation of a unipolar memristor could be explained by thermophoresis, or the Soret effect, which is the diffusion of atoms, ions or vacancies in a steep temperature gradient. This mechanism explains the observed resistance switching via conducting channel formation and dissolution reported for TiO 2 and other metal-oxide-based unipolar resistance switches. Depending on the temperature profile in a device, dilute vacancies can preferentially diffuse radially inward toward higher temperatures caused by the Joule heating of an electronic current to essentially condense and form a conducting channel. The RESET operation occurs via radial diffusion of vacancies away from the channel when the temperature is elevated but the gradient is small.