We study normal filters on the set spaces
λ
,
P
κ
(
λ
)
,
[
λ
]
κ
\lambda ,{\mathcal {P}_\kappa }\left ( \lambda \right ),{\left [ \lambda \right ]^\kappa }
, and
(
λ
)
κ
{\left ( \lambda \right )^\kappa }
. We characterize the least normal
γ
\gamma
-complete filter containing a given
γ
\gamma
-complete filter for
γ
≥
ω
1
\gamma \geq {\omega _1}
. If
F
\mathcal {F}
is a
ω
1
{\omega _1}
-complete filter on any of the set spaces mentioned, the least
ω
1
{\omega _1}
-complete normal filter containing it is the filter generated by the sets
{
x
∈
E
|
α
1
,
…
,
α
n
∈
x
→
x
∈
f
(
α
1
,
…
,
α
n
)
}
\left \{ {x \in E\left | {{\alpha _1}, \ldots ,{\alpha _n} \in x \to x \in f\left ( {{\alpha _1}, \ldots ,{\alpha _n}} \right )} \right .} \right \}
where
f
:
λ
>
ω
→
F
f:{\lambda ^{ > \omega }} \to \mathcal {F}
.