The drivers of regional parasite distributions are poorly understood, especially in comparison with those of free-living species. For vector-transmitted parasites, in particular, distributions might be influenced by host-switching and by parasite dispersal with primary hosts and vectors. We surveyed haemosporidian blood parasites (Plasmodium and Haemoproteus) of small land birds in eastern North America to characterize a regional parasite community. Distributions of parasite populations generally reflected distributions of their hosts across the region. However, when the interdependence between hosts and parasites was controlled statistically, local host assemblages were related to regional climatic gradients, but parasite assemblages were not. Moreover, because parasite assemblage similarity does not decrease with distance when controlling for host assemblages and climate, parasites evidently disperse readily within the distributions of their hosts. The degree of specialization on hosts varied in some parasite lineages over short periods and small geographic distances independently of the diversity of available hosts and potentially competing parasite lineages. Nonrandom spatial turnover was apparent in parasite lineages infecting one host species that was well-sampled within a single year across its range, plausibly reflecting localized adaptations of hosts and parasites. Overall, populations of avian hosts generally determine the geographic distributions of haemosporidian parasites. However, parasites are not dispersal-limited within their host distributions, and they may switch hosts readily.avian malaria | community assembly | emerging infectious disease | Haemosporida | parasite communities A regional community can be thought of as a set of species whose distributions partially overlap within a large geographic area (1, 2). The structure of the regional community (i.e., the relative abundances of species across space and the degree to which populations cooccur) is governed by local (e.g., interspecific competition) and regional (e.g., species diversification and dispersal) processes (3). Although regional communities include all species, parasites and pathogens are rarely considered integral community members (4). Indeed, impacts of parasites on community structure are frequently associated with epidemicsoften following introductions to nonnative regions-that have driven naïve hosts to extinction or near extinction (5-7). However, parasites likely play a critical role in shaping regional community structure. Parasites can comprise a large proportion of the community biomass (8), form the majority of links in a community food web (9), and influence regional diversity by variously accelerating (10) or slowing (11) host diversification.Nevertheless, few studies have investigated the processes influencing the regional community structure of both parasites and their hosts. Parasite populations are integrated into community studies with difficulty, partly because these populations are distributed across multiple...