Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The existence of at least one non-decreasing sequence of positive eigenvalues for the problem driven by both p(·)-Harmonic and p(·)-biharmonic operators\eqalign{& \Delta _{p\left( x \right)}^2u - {\Delta _{p\left( x \right)}}u = \lambda w\left( x \right){\left| u \right|^{q\left( x \right) - 2}}u\,\,\,{\rm{in}}\,\,\Omega {\rm{,}} \cr & \,\,\,\,\,\,\,\,\,\,\,\,u \in {W^{2,p\left( \cdot \right)}}\left( \Omega \right) \cap W_0^{ - 1,p\left( \cdot \right)}\left( \Omega \right), \cr}is proved by applying a local minimization and the theory of the generalized Lebesgue-Sobolev spaces Lp(·)(Ω) and Wm,p(·)(Ω).
The existence of at least one non-decreasing sequence of positive eigenvalues for the problem driven by both p(·)-Harmonic and p(·)-biharmonic operators\eqalign{& \Delta _{p\left( x \right)}^2u - {\Delta _{p\left( x \right)}}u = \lambda w\left( x \right){\left| u \right|^{q\left( x \right) - 2}}u\,\,\,{\rm{in}}\,\,\Omega {\rm{,}} \cr & \,\,\,\,\,\,\,\,\,\,\,\,u \in {W^{2,p\left( \cdot \right)}}\left( \Omega \right) \cap W_0^{ - 1,p\left( \cdot \right)}\left( \Omega \right), \cr}is proved by applying a local minimization and the theory of the generalized Lebesgue-Sobolev spaces Lp(·)(Ω) and Wm,p(·)(Ω).
We investigate the existence of non-trivial weak solutions for the following p(x)-Kirchhoff bi-nonlocal elliptic problem driven by both p(x)-Laplacian and p(x)-Biharmonic operators { M ( σ ) ( Δ p ( x ) 2 u - Δ p ( x ) u ) = λ ϑ ( x ) | u | q ( x ) - 2 u ( ∫ Ω ϑ ( x ) q ( x ) | u | q ( x ) d x ) r in Ω , u ∈ W 2 , p ( . ) ( Ω ) ∩ W 0 1 , p ( . ) ( Ω ) , \left\{ {\matrix{ {M\left( \sigma \right)\left( {\Delta _{p\left( x \right)}^2u - {\Delta _{p\left( x \right)}}u} \right) = \lambda \vartheta \left( x \right){{\left| u \right|}^{q\left( x \right) - 2}}u{{\left( {\int_\Omega {{{\vartheta \left( x \right)} \over {q\left( x \right)}}{{\left| u \right|}^{q\left( x \right)}}dx} } \right)}^r}\,{\rm{in}}\,\Omega ,} \hfill \cr {u \in {W^{2,p\left( . \right)}}\left( \Omega \right) \cap W_0^{1,p\left( . \right)}\left( \Omega \right),} \hfill \cr } } \right. under some suitable conditions on the continuous functions p, q, the non-negative function ϑ and M(σ), where σ : = ∫ Ω | Δ u | p ( x ) p ( x ) + | ∇ u | p ( x ) p ( x ) d x . \sigma : = \int_\Omega {{{{{\left| {\Delta u} \right|}^{p\left( x \right)}}} \over {p\left( x \right)}} + {{{{\left| {\nabla u} \right|}^{p\left( x \right)}}} \over {p\left( x \right)}}dx.} Our main results is obtained by employing variational techniques and the well-known symmetric mountain pass lemma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.