1996
DOI: 10.1007/bf02362785
|View full text |Cite
|
Sign up to set email alerts
|

On the stability of branching continued fractions

Abstract: We study two aspects of the stability problem for various types of branching fractions using the domains of the elements, the region of convergence, and limit-periodic fractions.Despite the fact that one of the most important properties of continued fractions and their multi-dimensional generalizations is the property of computational stability, only a comparatively small number of papers has been-devoted to this problem [1,3,[5][6][7].

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
6
0
2

Year Published

2006
2006
2020
2020

Publication Types

Select...
4
1

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(8 citation statements)
references
References 6 publications
0
6
0
2
Order By: Relevance
“…. , n y , and |b n+1,n+1 (x * , y * )| ≥ d x d y + 3, where the coefficients b nx+1,j (x * ), b i,ny+1 (y * ), and b n+1,n+1 (x * , y * ) are determined by relations (10) with x nx+1 = x * and y ny+1 = y * .…”
Section: Estimate For the Remainder Of The Kuchmins'ka-cuyt Interpolamentioning
confidence: 99%
See 1 more Smart Citation
“…. , n y , and |b n+1,n+1 (x * , y * )| ≥ d x d y + 3, where the coefficients b nx+1,j (x * ), b i,ny+1 (y * ), and b n+1,n+1 (x * , y * ) are determined by relations (10) with x nx+1 = x * and y ny+1 = y * .…”
Section: Estimate For the Remainder Of The Kuchmins'ka-cuyt Interpolamentioning
confidence: 99%
“…Using the methods of [10], we can find a relation for the difference of convergents. Denote the remainder [the tail of the two-dimensional continued fraction (2)] by…”
Section: Relation For the Difference Of Convergentsmentioning
confidence: 99%
“…They also form an important class of nonlinear equations of mathematical physics and modeling in power engineering and electrical engineering. Let us consider an approach to the solution of nonlinear polynomial matrix equations that is based on the theory of branching continued fractions (BCFs) [5][6][7]. It should be noted that not only numerical but also symbolic solution methods are considered.…”
Section: (5)mentioning
confidence: 99%
“…Гiллястi ланцюговi дроби (ГЛД) є багатовимiрними узагальненнями неперервних дро-бiв. Рiзнi типи областей збiжностi для рiзних конструкцiй ГЛД дослiджували у своїх ро-ботах Д. Боднар [5,6], Х. Кучмiнська [10], Т. Антонова [1,2], В. Гладун [1], Р. Дмитришин [8], О. Сусь [2], Н. Гоєнко [6], О. Манзiй [14] та iншi. Найпростiшими за структурою, аналогiчнi структурi кратних степеневих рядiв, є гiл-лястi ланцюговi дроби з нерiвнозначними змiнними…”
Section: вступunclassified
“…Гiллястi ланцюговi дроби (ГЛД) є багатовимiрними узагальненнями неперервних дро-бiв. Рiзнi типи областей збiжностi для рiзних конструкцiй ГЛД дослiджували у своїх ро-ботах Д. Боднар [5,6] Найпростiшими за структурою, аналогiчнi структурi кратних степеневих рядiв, є гiл-лястi ланцюговi дроби з нерiвнозначними змiнниминазивається n-тим пiдхiдним дробом ГЛД (1). У данiй статтi для гiллястих ланцюгових дробiв з нерiвнозначними змiнними вста-новлено деякi областi збiжностi.…”
unclassified