In this investigation, an exact method based on the first-order shear deformation shallow shell theory (FSDSST) is performed for the free vibration of functionally graded sandwich shallow shells (FGSSS) on Winkler and Pasternak foundations with general boundary restraints. Vibration characteristics of the FGSSS have been obtained by the energy function represented in the orthogonal coordinates, in which the displacement and rotation components consisted of standard double Fourier cosine series and several closed-form supplementary functions are introduced to eliminate the potential jumps and boundary discontinuities. Then, the expansion coefficients are determined by using Rayleigh-Ritz method. The proposed method shows good accuracy and reliability by comprehensive investigation concerning free vibration of the FGSSS. Numerous new vibration results for FGSSS on Winkler and Pasternak foundations with various curvature types, geometrical parameters, and boundary restraints are provided, which may serve as benchmark solutions for future research. In addition, the effects of the inertia, shear deformation, and foundation coefficients on free vibration characteristic of FGSSS are illustrated.