Abstract:We consider the stability problem for two-dimensional spatially periodic flows of general form, close to the shear, assuming that the ratio of the periods tends to zero, and the average of the velocity component corresponding to the "long" period is non-zero. The first terms of the long-wavelength asymptotics are found. The coefficients of the asymptotic expansions are explicitly expressed in terms of some Wronskians and integral operators of Volterra type, as in the case of shear basic flow. The structure of … Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.