On the Strength of Uniqueness Quantification in Primitive Positive Formulas
Victor Lagerkvist,
Gustav Nordh
Abstract:Uniqueness quantification (∃!) is a quantifier in first-order logic where one requires that exactly one element exists satisfying a given property. In this paper we investigate the strength of uniqueness quantification when it is used in place of existential quantification in conjunctive formulas over a given set of relations Γ, so-called primitive positive definitions (pp-definitions). We fully classify the Boolean sets of relations where uniqueness quantification has the same strength as existential quantifi… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.