Günümüzde yüz tanıma ve doğrulama sistemleri akıllı telefonlardan güvenlik sistemlerine, ödeme uygulamalarından uzaktan sağlık uygulamalarına kadar birçok alanda yüksek doğrulukla kullanılmaktadır. Yüz tanıma sistemlerini yanıltmanın en yaygın yolu kişinin sisteme kendi yüzü yerine maske, yazıcı çıktısı ya da monitör gibi araçlarla başka birinin yüzünü sunmasıdır. Son yıllarda birçok bilgisayarla görme uygulamasında olduğu gibi yüz tanıma sistemlerinde görüntü sahteciliğini önleme amacıyla da oldukça başarılı derin sinir ağı modelleri geliştirilmiştir. Bu modellerin farklı sahtecilik yöntemlerini hassas bir şekilde tespit edebilmesi ve girdi görüntülere uygulanacak saldırılara karşı dayanıklı olması beklenmektedir. Bu çalışmada güncel ve başarılı bir görüntü sahteciliği tespit modeli olan DGUA-FAS'ın çekişmeli saldırılara karşı dayanıklılığı araştırılmaktadır. Bu amaçla MIO algoritmasına dayalı kara kutu çekilmeli saldırı üretme yöntemi ile DGUA-FAS modelini yanıltmak amacıyla çekişmeli örnek görüntüler üretilmektedir. Deneysel çalışmalar, DGUA-FAS modelinin saldırı uygulanan tüm görüntüleri hatalı şekilde sınıflandırdığını göstermektedir. Elde edilen sonuçlar, yüz sahteciliği tespit modellerinin çekişmeli saldırılara karşı daha dayanıklı hale gelmesi gerektiğini göstermektedir.