In this article, the authors aim to consider a fundamentally new methodology for calculating the stability of the walls of a borehole in the manufacture of foundations using bored piles. This kind of foundations is increasingly used in construction practice in connection with the growing and compacting development of not only civil buildings, but also of reconstructed industries. There is a need for a more detailed consideration of external factors (in the area of soil massifs) that affect the stability of the walls of the borehole in the thickness of the soil. According to the authors, the technique establishes a relationship between the geometric parameters of the borehole, which include the depth of the borehole and its constant diameter throughout, and the physical and mechanical characteristics of the soil (specific gravity, angle of internal friction, and deformation modulus) of the construction site. The proposed calculation method allows us to determine at the design stage the need for additional measures to protect the walls of the wells from collapse when installing bored piles. Additional measures include the use of drilling fluids, the use of casing pipes and more. The need for the appointment of these measures entails the emergence of a significant economic component in the final cost of the object. When carrying out design work, modern realities require a detailed justification of the decisions made in order to reduce material consumption and labor intensity, and ultimately the cost of the facilities. According to the results of the work done in the course of the mathematical experiment, the necessary dependence was established by the authors of the article. The borehole will maintain its geometric immutability in the case when the stress in the soil is less than the rigidity of the soil element allocated for the construction of a mathematical experiment.