1972
DOI: 10.2307/1970819
|View full text |Cite
|
Sign up to set email alerts
|

On the Structure of Complete Manifolds of Nonnegative Curvature

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

1
165
0
5

Year Published

1994
1994
2021
2021

Publication Types

Select...
6
3

Relationship

0
9

Authors

Journals

citations
Cited by 572 publications
(171 citation statements)
references
References 12 publications
1
165
0
5
Order By: Relevance
“…Before delving into this issue, we briefly recall the result in [13]. We adopt the terminology of [6, p. 403] (or [7]), and we call a set A ⊂ M strongly convex if any two points in A can be connected by a unique minimizing geodesic segment and the geodesic segment lies entirely in A. Let injM denote the injectivity radius of M and let Δ be an upper bound on the sectional curvatures of M .…”
Section: On the History Of Riemannian Center Of Massmentioning
confidence: 99%
See 1 more Smart Citation
“…Before delving into this issue, we briefly recall the result in [13]. We adopt the terminology of [6, p. 403] (or [7]), and we call a set A ⊂ M strongly convex if any two points in A can be connected by a unique minimizing geodesic segment and the geodesic segment lies entirely in A. Let injM denote the injectivity radius of M and let Δ be an upper bound on the sectional curvatures of M .…”
Section: On the History Of Riemannian Center Of Massmentioning
confidence: 99%
“…Throughout the paper, we repeatedly use the structure of convex sets as derived by Cheeger and Gromoll in [7] without specific reference. The interior of any strongly convex set C ⊂ M , denoted by intC has the structure of a k-dimensional (0 ≤ k ≤ n) totally geodesic (embedded) submanifold of M with a (possibly nonsmooth or empty) boundary ∂C such that C = intC ∪ ∂C.…”
Section: Existence and Uniquenessmentioning
confidence: 99%
“…[20]). Полное открытое многообразие M неотрицатель-ной секционной кривизны диффеоморфно нормальному расслоению ν(S) ком-пактного вполне выпуклого вполне геодезического подмногообразия S в M .…”
Section: § 1 введениеunclassified
“…Следовательно, такие решения исклю-чительно важны для изучения квантовых аспектов гравитации. Причина, в силу которой классические кротовые норы могут существовать, связана со следствием теоремы Чигера и Гломмола [7], в которой утвержается, что необходимое (но не достаточное) условие существования классической кротовой норы состоит в том, чтобы собственные значения тензора Риччи были отрицательны где-то на многооб-разии [8].…”
Section: Introductionunclassified