An inductive conduction heating process to heat the extruder in wire additive manufacturing is explored through numerical simulation and an in situ infrared imaging. The 2 D Finite Element Method (FEM) based simulation model provides insights into extruder heating in the inductive conduction heating process. The precise temperature control in the extruder can help achieve the efficient flow of material from extruder. The induction coil design variations to control the extruder temperature are computed numerically to obtain an approximate solution thus offers time and cost-saving. The presented study considers the number of turns of coil, coil radius and coil configurations as the induction coil design parameters whereas coil current, and current frequency are considered to be constant. Based on the results, the design of extruder and geometry of induction coil assembly is proposed to efficiently bring the feed material (Al-5356) to semi-solid state. A thermal imaging method is implemented using an infrared camera to analyse the evolution of thermal fields during extruder heating. Comparison of the extruder tip temperature from simulation and experiments shows an agreeable match with a variation of 8.57%.