Motivated by a problem of optimal harvesting of natural resources, we study a control problem for Volterra type dynamics driven by time-changed Lévy noises, which are in general not Markovian. To exploit the nature of the noise, we make use of different kind of information flows within a maximum principle approach. For this we work with backward stochastic differential equations (BSDE) with time-change and exploit the non-anticipating stochastic derivative introduced in Di Nunno and Eide (Stoch Anal Appl 28:54-85, 2009). We prove both a sufficient and necessary stochastic maximum principle.