1960
DOI: 10.1007/bf02546356
|View full text |Cite
|
Sign up to set email alerts
|

On the theory of potentials in locally compact spaces

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

6
399
0
2

Year Published

1965
1965
2017
2017

Publication Types

Select...
6
2

Relationship

1
7

Authors

Journals

citations
Cited by 168 publications
(407 citation statements)
references
References 15 publications
6
399
0
2
Order By: Relevance
“…On peut en fait construire un noyau symétrique k (satisfaisant à tous les principes habituels de la théorie du potentiel) sur un espace localement compact, mais non dénombrable à l'infini, tel qu'il existe des ensembles fermés non capacitables (voir [14], ex. 10, p. 213).…”
Section: Caractérisation Des Fonctions Quasi-continues Ayant La Quasiunclassified
“…On peut en fait construire un noyau symétrique k (satisfaisant à tous les principes habituels de la théorie du potentiel) sur un espace localement compact, mais non dénombrable à l'infini, tel qu'il existe des ensembles fermés non capacitables (voir [14], ex. 10, p. 213).…”
Section: Caractérisation Des Fonctions Quasi-continues Ayant La Quasiunclassified
“…Since the kernel G satisfies the maximum principle (see, for example, Theorem 5.2.2 in [6]), it follows from ( [7], page 159) that for any compact subset…”
Section: Capacity and Exit Time Estimates For Some Symmetric Lévy Promentioning
confidence: 99%
“…Our starting point is to combine the potential theory in locally compact spaces developed by Fuglede [10] in the 1960's with the homogeneous spaces of Coifman and Weiss [5] from the early 1970's. A homogeneous space (X, d, µ) consists of a quasimetric space (X, d) equipped with a nonnegative doubling measure µ (see Section 2 for the details).…”
Section: Introductionmentioning
confidence: 99%
“…The C k -capacity of a compact set K is defined by C k (K) −1 = inf I k (ν), where infimum is over all nonnegative measures ν supported in K with total mass ∥ν∥ 1 = 1 and I k (ν) denotes the energy integral I k (ν) =´´k(x, y) dν(x) dν(y). A complete homogeneous space is locally compact and we can apply the basic existence theorem for capacitary measures and capacitary potentials for compact sets in [10,Theorem 2.4]. The corresponding result for more general sets in a locally compact space is harder and requires stronger assumptions on the kernel, see [10,Chap.…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation