We compute the rational zero-divisor cup-length of the oriented partial flag manifold
F
˜
(
n
1
,
…
,
n
k
)
\[\widetilde{F}\left( {{n}_{1}},\ldots,{{n}_{k}} \right)\]
of type (n
1,…, nk
), k ≥ 2. For certain classes of oriented partial flag manifolds, we compare the rational zero-divisor cup-length and the
ℤ
2
\[{{\mathbb{Z}}_{2}}\]
-zero-divisor cup-length.