We give some upper bounds on the dimension of the kernel of the cup product map H 1 (X, C) ⊗ H 1 (X, C) → H 2 (X, C), where X is a compact Kähler variety without Albanese fibrations.2. If q = 2n, then dim ker φ ≤ 2c + 3 where q = 2 c (2b + 1), and b, c integers.3. If q = 5 and n = 2, then dim ker φ ≤ 14. * Partially supported by 1) PRIN 2005 "Spazi di moduli e teorie di Lie"; 2) Indam (GNSAGA); 3) Far 2006 (PV):"Varietà algebriche, calcolo algebrico, grafi orientati e topologici".