On the transformations linearizing isochronous centers of Hamiltonian systems
Guangfeng Dong,
Yuyi Zhang
Abstract:In this paper we study the transformations linearizing isochronous centers of planar Hamiltonian differential systems with polynomial Hamiltonian functions H(x, y) having only isolated singularities. Assuming the origin is an isochronous center lying on the level curve L 0 defined by H(x, y) = 0, we prove that, there exists a canonical linearizing transformation analytic on a simply-connected open set Ω with closure Ω = R 2 , if and only if, L 0 consists of only isolated points; furthermore, if the origin is t… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.