2016
DOI: 10.1090/proc/13057
|View full text |Cite
|
Sign up to set email alerts
|

On the universal central extension of hyperelliptic current algebras

Abstract: Abstract. Let p(t) ∈ C[t] be a polynomial with distinct roots and nonzero constant term. We describe, using Faá de Bruno's formula and Bell polynomials, the universal central extension in terms of generators and relations for the hyperelliptic current Lie algebras g ⊗ R whose coordinate ring is of the form R = C[t, t −1 , u | u 2 = p(t)].

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
1
0
1

Year Published

2018
2018
2021
2021

Publication Types

Select...
3
2

Relationship

2
3

Authors

Journals

citations
Cited by 6 publications
(2 citation statements)
references
References 24 publications
0
1
0
1
Order By: Relevance
“…Our approach can be applied to study representations of the hyperelliptic algebras [7] and the superelliptic algebras [9], which are natural generalizations of the n-point algebras. We will discuss this topic in future paper.…”
Section: Introductionmentioning
confidence: 99%
“…Our approach can be applied to study representations of the hyperelliptic algebras [7] and the superelliptic algebras [9], which are natural generalizations of the n-point algebras. We will discuss this topic in future paper.…”
Section: Introductionmentioning
confidence: 99%
“…A descrição explícita destas estruturas em termos de geradores e relações de comutatividade foi estudada por Bremner em [Bre94] e [Bre95]. No caso de álgebras de Lie da forma g ⊗ R em que R é o anel das funções regulares definidas em uma curva algébrica com uma quantidade enumerável de pontos removidos, Bremner calculou a dimensão da extensão central universal associada, o que ofereceu ferramentas necessárias para a construção de realizações de corpos livres de álgebras afim elípticas 4-ponto em [CJ14], [CF11], [Cox16].…”
Section: Introductionunclassified