On the unresolved conjecture for the algebraic transfers over the binary field
Đặng Võ Phúc
Abstract:Let us consider the binary field $\mathbb Z/2.$ An important problem of algebraic topology is to determine the cohomology ${\rm Ext}_{\mathcal A}^{h, *}(\mathbb Z/2, \mathbb Z/2)$ of the Steenrod ring $\mathcal A.$ This remains open for all homological degrees $h\geq 6.$ The algebraic transfer of rank $h$, defined by W.M. Singer in [Math. Z. \textbf{202} (1989), 493-523], is a $\mathbb Z/2$-linear map that plays a crucial role in describing the Ext groups. The conjecture proposed by Singer himself, namely that… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.