Abstract:We study the size and the complexity of computing finite state automata (FSA) representing and approximating the downward and the upward closure of Petri net languages with coverability as the acceptance condition. We show how to construct an FSA recognizing the upward closure of a Petri net language in doubly-exponential time, and therefore the size is at most doubly exponential. For downward closures, we prove that the size of the minimal automata can be non-primitive recursive. In the case of BPP nets, a we… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.