This research deals with the dynamic analysis of a rectangular plate made of porous materials. The porous plate is subjected to a dynamic transverse load and is resting on a Pasternak foundation. Linear poroelasticity theory is used to obtain the Biot formulation of the constitutive equations for the porous material. Also, the Young modulus and density of the porous plate vary in the transverse direction versus the porosity of the plate. Tennessee marble is the porous material that used in this paper. Reddy’s third-order shear deformation theory with five unknowns, the energy method, and Hamilton’s principle are applied to derive the equations of motion of the porous plate. These equations are solved by a differential quadrature method as a numerical method due to five coupled large equations. A detailed numerical study indicates the significant effects of aspect ratio, thickness ratio, boundary conditions, elastic medium, load intensity, and porosity on deflection of the porous plate. Results of this study can be useful to design of pneumatic conveying, handling, and control systems.