Abstract-Decentralized Critical infrastructure management systems will play a key role in reducing costs and improving the quality of service of industrial processes, such as electricity production. The recent malwares (e.g. Stuxnet) revealed several vulnerabilities in today's Distributed Control Systems (DCS), but most importantly they highlighted the lack of an efficient scientific approach to conduct experiments that measure the impact of cyber threats on both the physical and the cyber parts of Networked Critical Infrastructures (NCIs). The study of those complex systems, either physical or cyber, could be carried out by experimenting with real systems, software simulators or emulators. Experimentation with production systems suffers from the inability to control the experiment environment. On the other hand the development of a dedicated experimentation infrastructure with real components is often economically prohibitive and disruptive experiments on top of it could be a risk to safety. In this paper, we focus on the implementation of a Cyber-Physical (CP) testbed which includes physical equipment. We illustrate and the cyber security issues on the communication channel between the Critical Infrastructures(CIs), such as a power grid, a nuclear plant and the energy market. We simulate the power grid network (including nuclear plant), but we emulate the Information and Communications Technology (ICT) part which is the focus of our work. Within this context we assume that we are able to implement scenarios, which produce consequences on the normal operation of the power power grid and the financial area.