As theory dictates, for a series of horizontal layers, a pure, plane, horizontally polarized shear (SH) wave refracts and reflects only SH waves and does not undergo wavetype conversion as do incident P or Sv waves. This is one reason the shallow SH-wave refraction method is popular. SH-wave refraction method usually works well defining nearsurface shear-wave velocities. Only first arrival information is used in the SH-wave refraction method. Most SH-wave data contain a strong component of Love-wave energy. Love waves are surface waves that are formed from the constructive interference of multiple reflections of SH waves in the shallow subsurface. Unlike Rayleigh waves, the dispersive nature of Love waves is independent of P-wave velocity. Love-wave phase velocities of a layered earth model are a function of frequency and three groups of earth properties: SH-wave velocity, density, and thickness of layers. In theory, a fewer parameters make the inversion of Love waves more stable and reduce the degree of nonuniqueness. Approximating SH-wave velocity using Love-wave inversion for near-surface applications may become more appealing than Rayleigh-wave inversion because it possesses the following three advantages. (1) Numerical modeling results suggest the independence of P-wave velocity makes Love-wave dispersion curves simpler than Rayleigh waves. A complication of ''Mode kissing'' is an undesired and frequently occurring phenomenon in Rayleigh-wave analysis that causes mode misidentification. This phenomenon is less common in dispersion images of Love-wave energy. (2) Real-world examples demonstrated that dispersion images of Love-wave energy have a higher signalto-noise ratio and more focus than those generated from Rayleigh waves. This advantage is related to the long geophone spreads commonly used for SH-wave refraction surveys, images of Love-wave energy from longer offsets are much cleaner and sharper than for closer offsets, which makes picking phase velocities of Love waves easier and more accurate. (3) Real-world examples demonstrated that inversion of Love-wave dispersion curves is less dependent on initial models and more stable than Rayleigh waves. This is due to Love-wave's independence of P-wave velocity, which results in fewer unknowns in the MALW method compared to inversion methods of Rayleigh waves. This characteristic not only makes Love-wave dispersion curves simpler but also reduces the degree of nonuniqueness leading to more stable inversion of Love-wave dispersion curves.