Purpose
Deformable image registration (DIR) algorithms may enable multi-fraction dose tracking and improved treatment response assessment, but the accuracy of these methods must be investigated. This study introduces and evaluates a novel deformable 3D dosimetry system (Presage-Def/Optical-CT) and its application toward investigating the accuracy of dose deformation in a commercial DIR package.
Methods and Materials
Presage-Def is a new dosimetry material consisting of an elastic polyurethane matrix doped with radiochromic leuco dye. Radiological and mechanical properties were characterized using standard techniques. Dose-tracking feasibility was evaluated by comparing dose distributions between dosimeters irradiated with and without 27% lateral compression. A checkerboard plan of 5 mm square fields enabled precise measurement of true deformation using 3D dosimetry. Predicted deformation was determined from a commercial DIR algorithm.
Results
Presage-Def exhibited a linear dose response with sensitivity of 0.0032 ΔOD/(Gy·cm). Mass density is 1.02 g/cm3 and effective atomic number is within 1.5% of water over a broad (0.03–10 MeV) energy range, indicating good water-equivalence. Elastic characteristics were close to liver tissue, with Young’s modulus of 13.5–887 kPa over a stress range of 0.233–303 kPa, and Poisson’s ratio of 0.475 (SE=0.036). The Presage-Def/Optical-CT system successfully imaged the non-deformed and deformed dose distributions with isotropic resolution of 1 mm. Comparison with the predicted deformed 3D dose distribution identified inaccuracies in the commercial DIR algorithm. While external contours were accurately deformed (sub-millimeter accuracy), volumetric dose deformation was poor. Checkerboard field positioning and dimension errors of up to 9 and 14 mm respectively were identified, and the 3D DIR-deformed dose gamma passing rate was only γ3%/3mm=60.0%.
Conclusions
The Presage-Def/Optical-CT system shows strong potential for comprehensive investigation of DIR algorithm accuracy. Substantial errors in a commercial DIR were found in the conditions evaluated. This work highlights the critical importance of careful validation of DIR algorithms prior to clinical implementation.