A mathematical model is developed using the Matlab/Simulink platform to investigate heat and mass transfer performance of cross-flow and counterflow dehumidifiers with Lithium Chloride (LiCl) solution. In the liquid desiccant dehumidifier, the orthogonal polynomial basis is used to simulate the combined processes of heat and mass transfer. The temperature profiles on cross-flow and countercurrent flow dehumidifiers are demonstrated. The resultant counter flow air changes the temperature profile of the LiCl solution in the longitudinal direction because of the drag forces. In addition, when inlet airflow rate reaches 15 kg·s −1 , the temperature effect becomes less obvious and may be reasonably negligible. Under these conditions, the air changes the design factor and determines the interfacial temperature. It is demonstrated that the mathematical model can be of great value in the design and improvement of cross-flow and countercurrent flow dehumidifiers.