2019
DOI: 10.1007/s10910-019-01082-5
|View full text |Cite
|
Sign up to set email alerts
|

On the variational principle for the non-linear Schrödinger equation

Abstract: While variation of the energy functional yields the Schrödinger equation in the usual, linear case, no such statement can be formulated in the general nonlinear situation when the Hamiltonian depends on its eigenvector. In this latter case, as we illustrate by sample numerical calculations, the points of the energy expectation value hypersurface where the eigenvalue equation is satisfied separate from those where the energy is stationary. We show that the variation of the energy at the eigensolution is determi… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 32 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?