The classical problem of simple shear in nonlinear elasticity has played an important role as a basic pilot problem involving a homogeneous deformation that is rich enough to illustrate several key features of the nonlinear theory, most notably the presence of normal stress effects. Here our focus is on certain ambiguities in the formulation of simple shear arising from the determination of the arbitrary hydrostatic pressure term in the normal stresses for the case of an incompressible isotropic hyperelastic material. A new formulation in terms of the principal stretches is given. An alternative approach to the determination of the hydrostatic pressure is proposed here: it will be required that the stress distribution for a perfectly incompressible material be the same as that for a slightly compressible counterpart. The form of slight compressibility adopted here is that usually assumed in the finite element simulation of rubbers. For the particular case of a neo-Hookean material, the different stress distributions are compared and contrasted.