Abstract:Graph learning based collaborative filtering (GLCF), which is built upon the message passing mechanism of graph neural networks (GNNs), has received great recent attention and exhibited superior performance in recommender systems. However, although GNNs can be easily compromised by adversarial attacks as shown by the prior work, little attention has been paid to the vulnerability of GLCF. Questions like can GLCF models be easily fooled just as GNNs remain largely unexplored. In this article, we propose to stud… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.