The emergence of structure in reactive geofluid systems is of current interest. In geofluid systems, the fluids are supported by a porous medium whose physical and chemical properties may vary in space and time, sometimes sharply, and which may also evolve in reaction with the local fluids. Geofluids may also experience pressure and temperature conditions within the porous medium that drive their momentum relations beyond the normal Darcy regime. Furthermore, natural geofluid systems may experience forcings that are periodic in nature, or at least episodic. The combination of transient forcing, nearcritical fluid dynamics and heterogeneous porous media yields a rich array of emergent geofluid phenomena that are only now beginning to be understood. One of the barriers to forward analysis in these geofluid systems is the problem of data scarcity. It is most often the case that fluid properties are reasonably well known, but that data on porous medium properties are measured with much less precision and spatial density. It is common to seek to perform an estimation of the porous medium properties by an inverse approach, that is, by expressing porous medium properties in terms of observed fluid characteristics. In this paper, we move toward such an inversion for the case of a generalized geofluid momentum equation in the context of time-periodic boundary conditions. We show that the generalized momentum equation results in frequency-domain responses that are governed by a second-order equation which is amenable to numerical solution. A stochastic perturbation approach demonstrates that frequency-domain responses of the fluids migrating in heterogeneous domains have spatial spectral densities that can be expressed in terms of the spectral densities of porous media properties.