In this paper we propose an Approximate Weak stationarity (AW -stationarity) concept designed to deal with Mathematical Programs with Cardinality Constraints (MPCaC), and we proved that it is a legitimate optimality condition independently of any constraint qualification. Such a sequential optimality condition improves weaker stationarity conditions, presented in a previous work. Many research on sequential optimality conditions has been addressed for nonlinear constrained optimization in the last few years, some works in the context of MPCC and, as far as we know, no sequential optimality condition has been proposed for MPCaC problems. We also establish some relationships between our AW -stationarity and other usual sequential optimality conditions, such as AKKT, CAKKT and PAKKT. We point out that, despite the computational appeal of the sequential optimality conditions, in this work we are not concerned with algorithmic consequences. Our aim is purely to discuss theoretical aspects of such conditions for MPCaC problems.