We consider the following X‐ray free electron lasers Schrödinger equation
false(i∇−Afalse)2u+Vfalse(xfalse)u−μfalse|xfalse|u=()1false|xfalse|∗false|ufalse|2u−Kfalse(xfalse)false|ufalse|q−2u,0.1em0.1emx∈ℝ3,$$ {\left(i\nabla -A\right)}^2u+V(x)u-\frac{\mu }{\mid x\mid }u=\left(\frac{1}{\mid x\mid}\ast {\left|u\right|}^2\right)u-K(x){\left|u\right|}^{q-2}u,x\in {\mathbb{R}}^3, $$
where
A∈Lloc2false(ℝ3,ℝ3false)$$ A\in {L}_{loc}^2\left({\mathbb{R}}^3,{\mathbb{R}}^3\right) $$ denotes the magnetic potential such that the magnetic field
B=curl0.4emA$$ B=\operatorname{curl}\kern0.4em A $$ is
ℤ3$$ {\mathbb{Z}}^3 $$‐periodic,
μ∈ℝ,0.1emK∈L∞()ℝ3$$ \mu \in \mathbb{R},K\in {L}^{\infty}\left({\mathbb{R}}^3\right) $$ is
ℤ3$$ {\mathbb{Z}}^3 $$ periodic and non‐negative,
q∈false(2,4false)$$ q\in \left(2,4\right) $$. Using the variational method, based on a profile decomposition of the Cerami sequence in
HA1()ℝ3$$ {H}_A^1\left({\mathbb{R}}^3\right) $$, we obtain the existence of the ground state solution for suitable
μ≥0$$ \mu \ge 0 $$. When
μ<0$$ \mu <0 $$ is small, we also obtain the non‐existence. Furthermore, we give a description of the asymptotic behavior of the ground states as
μ→0+$$ \mu \to {0}^{+} $$.